Shell Scripting

AfNOG Chix
Blantyre, Malawi

Why

* Scheduled Tasks
* Repetitive sequences
* Boot scripts

When not to use scripting

Resource-intensive tasks, especially where
speed is a factor

Complex applications, where structured
programming is a hecessity

Need direct access to system hardware

Proprietary, closed-source applications

Sample repetitive tasks

* Cleanup
* Run as root, of course.

cd /var/log
cat /dev/null > messages
cat /dev/null > wtmp

echo "Logs cleaned up.”
* You can put these commands in a file and say bash filename

she-bang

#! and the shell (first line only)
chmod a+x (remember the permissions)
Example: put the following text in hello.sh

#!/usr/local/bin/bash
echo Hello World

chmod a+x hello.sh
./hello.sh (remember SPATH)

variables

e Variable is a “container” of data. Some

variables already exist in your
“environment’ like SPATH and SPROMPT

* Shell substitutes any token that starts
with S with the contents of the variable of
that name

* Variable can be created using
VAR=something — some shells require the
keyword “set” to make it persist, others
need “export’

Sample special variables

S echo SPATH
the shell searches PATH for programs if you do not type them with an absolute path

S echo pwd
S echo S(pwd)

the shell runs the command in between “S(“and) ” and puts the result on the
command line

Y

When a process ends, it can leave an “exit code ” which is an integer which you can
check. If the exit code is zero then usually it exited successfully. Non zero usually
indicates an error.

sample repetitive tasks revisited

#!/usr/local/bin/bash # Proper header for a Bash script.
Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log# Variables are better than hard-coded values.

cd SLOG_DIR
cat /dev/null > messages
cat /dev/null > wtmp

echo "Logs cleaned up.”

exit # The right and proper method of "exiting" from a script.

Conditionals

* if expression then statement
* if expression then statementl else statement?2.

* if expressionl then statementl else if
expression2 then statement2 else statement3

Bash conditional syntax

#!/usr/local/bin/bash
if ["foo" = "foo"]; then

echo expression evaluated as true
fi

#!/usr/local/bin/bash
if ["foo" = "foo"]; then

echo expression evaluated as true
else

echo expression evaluated as false
fi

Loops

* for loop lets you iterate over a series of
'words' within a string.

* while executes a piece of code if the
control expression is true, and only stops
when it is false

* until loop is almost equal to the while
loop, except that the code is executed
while the control expression evaluates to
false.

Sample syntax

#!/usr/local/bin/bash
for 1 in $(1ls); do
echo item: $i

done

#!/usr/local/bin/bash
COUNTER=0
while [S$COUNTER -1t 10]; do
echo The counter is SCOUNTER
let COUNTER=COUNTER+1
done

#!/usr/local/bin/bash
COUNTER=20
until [$COUNTER -1t 10]; do
echo COUNTER SCOUNTER
let COUNTER-=1
done

Practice

* Write a shell script to print the disk usage every
5 seconds.

* Hint: sleep N is a command which will basically
put the prompt/program to sleep for N seconds

* Hint2: in any conditional, you can say “true” or
“false” to force it to always evaluate like that.

Extra

* Programming (say in C) builds on similar
concepts.

* Source text is COMPILED into binary
machine code. Why?

hello world (c style)
Edit hello.c and put the following text

#include <stdio.h>

int main(){
printf(“Hello World\n");
return O0;

}
Type gcc -0 hello hello.c

Type ./hello ; echo §?

Change the return O to return 42
Compile it again,

Run ./hello; echo S?

Resources

* Bash programming — Introduction/howto
— http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

* Advanced bash scripting guide:
— http://www.tldp.net/LDP/abs/html/index.html

