Introduction to the DNS

AfCHIX 2011 Blantyre, Malawi

Overview

- Goal of this session
- What is DNS ?
- How is DNS built and how does it work?
- How does a query work ?
- Record types
- Caching and Authoritative
- Delegation: domains vs zones
- Finding the error: where is it broken?

Goal of this session

- We will review the basics of DNS, including query mechanisms, delegation, and caching.
- The aim is to be able to understand enough of DNS to be able to configure a caching DNS server, and troubleshoot common DNS problems, both local and remote (on the Internet)

What is DNS ?

• System to convert names to IP addresses:

• ... and back:

196.200.223.1 → noc.ws.afnog.org 1.0.0.0.8.0.0.0.2.0.0.0.0.0.0.0.0.0.0 .0.0.0.0.d.2.4.1.0.0.2.ip6.arpa. → www.afrinic.net.

What is DNS ?

- Other information can be found in DNS:
 - where to send mail for a domain
 - who is responsible for this system
 - geographical information
 - etc...

• How do we look this information up?

Basic DNS tools

• Using the host command:

host noc.ws.afnog.org.

noc.ws.afnog.org has address 196.200.223.1

host **196.200.223.1**

1.223.200.196.in-addr.arpa domain name pointer noc.ws.afnog.org.

Basic DNS tools

• Host with IPv6:

host www.afrinic.net

www.afrinic.net has IPv6 address
2001:42d0::200:80:1

host 2001:42d0::200:80:1

Basic DNS tools

 Try this yourself with other names – first lookup the names below, then do the same for the IP address returned:

www.yahoo.com
www.nsrc.org
ipv6.google.com

- Does the lookup of the IP match the name? Why?
- Where did the 'host' command find the information?

How is DNS built?

How is DNS built?

- DNS is hierarchical
- DNS administration is shared no single central entity administrates all DNS data
- This distribution of the administration is called *delegation*

How does DNS work?

- Clients use a mechanism called a resolver and ask servers – this is called a query
- The server being queried will try to find the answer on behalf of the client
- The server functions recursively, from top (the root) to bottom, until it finds the answer, asking other servers along the way - the server is referred to other servers

How does DNS work?

- The client (web browser, mail program, ...) use the OS's resolver to find the IP address.
- For example, if we go to the webpage www.yahoo.com:
 - the web browser asks the OS « I need the IP for www.yahoo.com »
 - the OS looks in the resolver configuration which server to ask, and sends the query
- On UNIX, /etc/resolv.conf is where the resolver is configured.

Query detail with tcpdump

- Let's lookup 'h1-web.hosting.catpipe.net'
- On the server, we do:
 - # tcpdump -n udp and port 53
- In another window/screen do:

host <something>

Query detail - output

- 1: 18:40:38.62 IP 192.168.1.1.57811 > 192.112.36.4.53: 29030 [1au] A? h1-web.hosting.catpipe.net. (55)
- 2: 18:40:39.24 IP 192.112.36.4.53 > 192.168.1.1.57811: 29030- 0/13/16 (540)
- 3: 18:40:39.24 IP 192.168.1.1.57811 > 192.43.172.30.53: 7286 [1au] A? h1-web.hosting.catpipe.net. (55)
- 4: 18:40:39.93 IP 192.43.172.30.53 > 192.168.1.1.57811: 7286 FormErr- [0q] 0/0/0 (12)
- 5: 18:40:39.93 IP 192.168.1.1.57811 > 192.43.172.30.53: 50994 A? h1-web.hosting.catpipe.net. (44)
- 6: 18:40:40.60 IP 192.43.172.30.53 > 192.168.1.1.57811: 50994-0/3/3 (152)
- 7: 18:40:40.60 IP 192.168.1.1.57811 > 83.221.131.7.53: 58265 [lau] A? h1-web.hosting.catpipe.net. (55)
- 8: 18:40:41.26 IP 83.221.131.7.53 > 192.168.1.1.57811: 58265* 1/2/3 A 83.221.131.6 (139)

Query detail - analysis

• We use a packet analyser (wireshark / ethereal) to view the contents of the query...

Resolver configuration

- So how does your computer know which server to ask to get answers to DNS queries ?
- On UNIX, look in /etc/resolv.conf
- Look now in the file, and verify that you have a 'nameserver' statement of the form: nameserver a.b.c.d

or

```
nameserver ip:v6:ad:dr:es:ss
... where a.b.c.d is the IP/IPv6 of a functioning DNS
server (it should).
```


Finding the root...

• The first query is directed to:

192.112.36.4 (G.ROOT-SERVERS.NET.)

- How does the server know where to reach the root servers ?
- Chicken-and-egg problem
- Each namerserver has a list of the root nameservers (A – M.ROOT-SERVERS.NET) and their IP address
- In BIND, named.root

Using 'dig' to get more details

- The 'host' command is limited in its output good for lookups, but not enough for debugging.
- We use the 'dig' command to obtain more details
- Dig shows a lot of interesting stuff...

Using 'dig' to get more details

ns# dig @147.28.0.39 www.nsrc.org. a

; <<>> DiG 9.3.2 <<>> @147.28.0.39 www.afnog.org ; (1 server found) ;; global options: printcmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620 ;; flags: gr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 2 ;; OUESTION SECTION: ;www.afnog.org. IN Α ;; ANSWER SECTION: 14400 Α 128,223,162,29 www.afnog.org. TN ;; AUTHORITY SECTION: 14400 TN afnog.org. NS rip.psq.com. afnog.org. 14400 arizona.edu. TN NS ;; ADDITIONAL SECTION: rip.psq.com. 77044 TN 147.28.0.39 Α 2301 128.196.128.233 arizona.edu. TN Ά

;; Query time: 708 msec ;; SERVER: 147.28.0.39#53(147.28.0.39) ;; WHEN: Wed May 10 15:05:55 2007 ;; MSG SIZE rcvd: 128

noc# dig www.afrinic.net any					
<pre>; <<>> DiG 9.4.2 <<>> any www.afrinic.net ;; global options: printcmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019 ;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10</pre>					
;; QUESTION SECTIO; www.afrinic.net.		IN	ANY		
;; ANSWER SECTION: www.afrinic.net. 4 www.afrinic.net. 6	177			2001:42d0::200:80:1 196.216.2.1	
;; AUTHORITY SECTI afrinic.net. 6 afrinic.net. 6 afrinic.net. 6 afrinic.net. 6 afrinic.net. 6 afrinic.net. 6	55324 55324 55324 55324 55324	IN IN	NS NS NS NS NS	<pre>sec1.apnic.net. sec3.apnic.net. ns1.afrinic.net. tinnie.arin.net. ns.lacnic.net. ns-sec.ripe.net.</pre>	
;; ADDITIONAL SECT ns.lacnic.net. 1 ns.lacnic.net. 6 ns-sec.ripe.net. 1 ns1.afrinic.net. 6 tinnie.arin.net. 1 sec1.apnic.net. 1 sec3.apnic.net. 1 sec3.apnic.net. 1	51715 5315 36865 36865 5315 51715 51715 51715 51715	IN IN IN IN IN IN IN	AAAA A AAAA	200.160.0.7 2001:12ff::7 193.0.0.196 2001:610:240:0:53::4 196.216.2.1 168.143.101.18 202.12.29.59 2001:dc0:2001:a:4608::59 202.12.28.140 2001:dc0:1:0:4777::140	
<pre>;; Query time: 1 msec ;; SERVER: 196.200.218.1#53(196.200.218.1) ;; WHEN: Tue May 27 08:48:13 2008 ;; MSG SIZE rcvd: 423</pre>					

dig output

- Some interesting fields:
 - flags section: qr aa rd
 - status
 - answer section
 - authority section
 - TTL (numbers in the left column)
 - query time
 - server
- Notice the 'A' and 'AAAA' record type in the output.

Record types

Basic record types:

- A, AAAA:
- NS:
- MX:
- CNAME:
- PTR:

- IPv4, IPv6 address NameServer Mail eXchanger Canonical name (alias)
- **Reverse** information

Caching vs Authoritative

- In the dig output, and in subsequent outputs, we noticed a decrease in query time if we repeated the query.
- Answers are being cached by the querying nameserver, to speed up requests and save network ressources
- The TTL value controls the time an answer can be cached
- DNS servers can be put in two categories: caching and authoritative.

Caching vs Authoritative: authoritative

- Authoritative servers typically only answer queries for data over which they have authority, i.e.: data of which they have an external copy, i.e. from disk (file or database)
- If they do not know the answer, they will point to a source of authority, but will not process the query recursively.

Caching vs Authoritative: caching

- Caching nameservers act as query forwarders on behalf of clients, and cache answers for later.
- Can be the same software (often is), but mixing functionality (recursive/caching and authoritative) is discouraged (security risks + confusing)
- The TTL of the answer is used to determine how long it may be cached without re-querying.

TTL values

- TTL values decrement and expire
- Try repeatedly asking for the A record for www.yahoo.com:
 - # dig www.yahoo.com
- What do you observe about the query time and the TTL?

SOA

Let's query the SOA for a domain:

SOA

- The first two fields highlighted are:
 - The SOA (Start Of Authority), which the administrator sets to the name of the « source » server for the domain data (this is not always the case)
 - The RP (Responsible Person), which is the email address (with the first @ replaced by a '.') to contact in case of technical problems.

SOA

- The other fields are:
 - serial: the serial number of the zone: this is used for replication between two nameservers
 - refresh: how often a replica server should check the master to see if there is new data
 - retry: how often to retry if the master server fails to answer after refresh.
 - expire: when the master server has failed to answer for too long, stop answering clients about this data.
- Why is expire necessary?

Running a caching nameserver

- Running a caching nameserver locally can be very useful
- Easy to setup, for example on FreeBSD:
 - add named_enable="YES" to /etc/rc.conf
 - start named:

/etc/rc.d/named start

What is a good test to verify that named is running?

Running a caching nameserver

When you are confident that your caching nameserver is working, enable it in your local resolver configuration (/etc/resolv.conf):

nameserver 127.0.0.1
nameserver ::1

Delegation

- We mentioned that one of the advantages of DNS was that of distribution through shared administration. This is called delegation.
- We delegate when there is an administrative boundary and we want to turn over control of a subdomain to:
 - a department of a larger organization
 - an organization in a country
 - an entity representing a country's domain

Delegation

Delegation: Domains vs Zones

- When we talk about the entire subtree, we talk about *domains*
- When we talk about part of a domain that is administered by an entity, we talk about *zones*

Delegation: Domains vs Zones

Finding the error: using doc

- When you encounter problems with your network, web service or email, you don't always suspect DNS.
- When you do, it's not always obvious what the problem is DNS is tricky.
- A great tool for quickly spotting configuration problems is 'doc'
- /usr/ports/dns/doc install it now!
- Let's do a few tests on screen with doc...

Conclusion

- DNS is a vast subject
- It takes a lot of practice to pinpoint problems accurately the first time – caching and recursion are especially confusing
- Remember that there are several servers for the same data, and you don't always talk to the same one
- Practice, practice, practice!
- Don't be afraid to ask questions...

