
Introduction to the DNS

AfCHIX 2011
Blantyre, Malawi

Overview

  Goal of this session
  What is DNS ?
  How is DNS built and how does it work?
  How does a query work ?
  Record types
  Caching and Authoritative
  Delegation: domains vs zones
  Finding the error: where is it broken?

Goal of this session

  We will review the basics of DNS, including query
mechanisms, delegation, and caching.

  The aim is to be able to understand enough of DNS
to be able to configure a caching DNS server, and
troubleshoot common DNS problems, both local and
remote (on the Internet)

What is DNS ?

  System to convert names to IP addresses:

www.ws.afnog.org → 196.200.223.1
www.afrinic.net → 2001:42d0::200:80:1

  ... and back:

196.200.223.1 → noc.ws.afnog.org
1.0.0.0.0.8.0.0.0.0.2.0.0.0.0.0.0.0.0.0
.0.0.0.0.0.d.2.4.1.0.0.2.ip6.arpa. →
www.afrinic.net.

What is DNS ?

  Other information can be found in DNS:

-  where to send mail for a domain
-  who is responsible for this system
-  geographical information
-  etc...

  How do we look this information up?

Basic DNS tools

  Using the host command:

host noc.ws.afnog.org.

noc.ws.afnog.org has address 196.200.223.1

host 196.200.223.1

1.223.200.196.in-addr.arpa domain name
pointer noc.ws.afnog.org.

Basic DNS tools

  Host with IPv6:

host www.afrinic.net

www.afrinic.net has IPv6 address
2001:42d0::200:80:1

host 2001:42d0::200:80:1

1.0.0.0.0.8.0.0.0.0.2.0.0.0.0.0.0.0.0.0.0.
0.0.0.0.d.2.4.1.0.0.2.ip6.arpa domain name
pointer www.afrinic.net.

Basic DNS tools

  Try this yourself with other names – first lookup the
names below, then do the same for the IP address
returned:

 www.yahoo.com
 www.nsrc.org
 ipv6.google.com

  Does the lookup of the IP match the name? Why?

  Where did the 'host' command find the information?

How is DNS built?

org com

DNS Database

etc usr bin

Unix Filesystem
... forms a tree structure

ac.ma

emi.ac.ma

afnog.org nsrc.org yahoo.com
usr/local usr/sbin /etc/rc.d

usr/local/src

.(root) / (root)

ma

www.afnog.org

How is DNS built?

  DNS is hierarchical

  DNS administration is shared – no single central
entity administrates all DNS data

  This distribution of the administration is called
delegation

How does DNS work?

  Clients use a mechanism called a resolver and ask
servers – this is called a query

  The server being queried will try to find the answer
on behalf of the client

  The server functions recursively, from top (the root)
to bottom, until it finds the answer, asking other
servers along the way - the server is referred to
other servers

How does DNS work?

  The client (web browser, mail program, ...) use the
OS’s resolver to find the IP address.

  For example, if we go to the webpage
www.yahoo.com:

-  the web browser asks the OS « I need the IP for
www.yahoo.com »

-  the OS looks in the resolver configuration which server to
ask, and sends the query

  On UNIX, /etc/resolv.conf is where the resolver is
configured.

A DNS query

« . » (root)

client server

.com DNS www.yahoo.com ?

yahoo.com DNS

ask Yahoo DNS 87.140.2.33

www.yahoo.com ?
Q

1

2

3

4
5

6

A

Query detail with tcpdump

  Let's lookup 'h1-web.hosting.catpipe.net'

  On the server, we do:

 # tcpdump -n udp and port 53

  In another window/screen do:

 # host <something>

Query detail - output

  1: 18:40:38.62 IP 192.168.1.1.57811 > 192.112.36.4.53: 29030
[1au] A? h1-web.hosting.catpipe.net. (55)

  2: 18:40:39.24 IP 192.112.36.4.53 > 192.168.1.1.57811:
29030- 0/13/16 (540)

  3: 18:40:39.24 IP 192.168.1.1.57811 > 192.43.172.30.53: 7286
[1au] A? h1-web.hosting.catpipe.net. (55)

  4: 18:40:39.93 IP 192.43.172.30.53 > 192.168.1.1.57811: 7286
FormErr- [0q] 0/0/0 (12)

  5: 18:40:39.93 IP 192.168.1.1.57811 > 192.43.172.30.53:
50994 A? h1-web.hosting.catpipe.net. (44)

  6: 18:40:40.60 IP 192.43.172.30.53 > 192.168.1.1.57811:
50994- 0/3/3 (152)

  7: 18:40:40.60 IP 192.168.1.1.57811 > 83.221.131.7.53: 58265
[1au] A? h1-web.hosting.catpipe.net. (55)

  8: 18:40:41.26 IP 83.221.131.7.53 > 192.168.1.1.57811:
58265* 1/2/3 A 83.221.131.6 (139)

Query detail - analysis

  We use a packet analyser (wireshark / ethereal) to
view the contents of the query...

Resolver configuration

  So how does your computer know which server to
ask to get answers to DNS queries ?

  On UNIX, look in /etc/resolv.conf
  Look now in the file, and verify that you have a

'nameserver' statement of the form:
 nameserver a.b.c.d
or
 nameserver ip:v6:ad:dr:es:ss
... where a.b.c.d is the IP/IPv6 of a functioning DNS
server (it should).

Finding the root...

  The first query is directed to:

 192.112.36.4 (G.ROOT-SERVERS.NET.)

  How does the server know where to reach the root
servers ?

  Chicken-and-egg problem
  Each namerserver has a list of the root nameservers

(A – M.ROOT-SERVERS.NET) and their IP address
  In BIND, named.root

Using 'dig' to get more details

  The 'host' command is limited in its output – good for
lookups, but not enough for debugging.

  We use the 'dig' command to obtain more details
  Dig shows a lot of interesting stuff...

ns# dig @147.28.0.39 www.nsrc.org. a

; <<>> DiG 9.3.2 <<>> @147.28.0.39 www.afnog.org
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4,
ADDITIONAL: 2

;; QUESTION SECTION:
;www.afnog.org. IN A

;; ANSWER SECTION:
www.afnog.org. 14400 IN A 128.223.162.29

;; AUTHORITY SECTION:
afnog.org. 14400 IN NS rip.psg.com.
afnog.org. 14400 IN NS arizona.edu.

;; ADDITIONAL SECTION:
rip.psg.com. 77044 IN A 147.28.0.39
arizona.edu. 2301 IN A 128.196.128.233

;; Query time: 708 msec
;; SERVER: 147.28.0.39#53(147.28.0.39)
;; WHEN: Wed May 10 15:05:55 2007
;; MSG SIZE rcvd: 128

Using 'dig' to get more details

noc# dig www.afrinic.net any

; <<>> DiG 9.4.2 <<>> any www.afrinic.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10

;; QUESTION SECTION:
;www.afrinic.net. IN ANY

;; ANSWER SECTION:
www.afrinic.net. 477 IN AAAA 2001:42d0::200:80:1
www.afrinic.net. 65423 IN A 196.216.2.1

;; AUTHORITY SECTION:
afrinic.net. 65324 IN NS sec1.apnic.net.
afrinic.net. 65324 IN NS sec3.apnic.net.
afrinic.net. 65324 IN NS ns1.afrinic.net.
afrinic.net. 65324 IN NS tinnie.arin.net.
afrinic.net. 65324 IN NS ns.lacnic.net.
afrinic.net. 65324 IN NS ns-sec.ripe.net.

;; ADDITIONAL SECTION:
ns.lacnic.net. 151715 IN A 200.160.0.7
ns.lacnic.net. 65315 IN AAAA 2001:12ff::7
ns-sec.ripe.net. 136865 IN A 193.0.0.196
ns-sec.ripe.net. 136865 IN AAAA 2001:610:240:0:53::4
ns1.afrinic.net. 65315 IN A 196.216.2.1
tinnie.arin.net. 151715 IN A 168.143.101.18
sec1.apnic.net. 151715 IN A 202.12.29.59
sec1.apnic.net. 151715 IN AAAA 2001:dc0:2001:a:4608::59
sec3.apnic.net. 151715 IN A 202.12.28.140
sec3.apnic.net. 151715 IN AAAA 2001:dc0:1:0:4777::140

;; Query time: 1 msec
;; SERVER: 196.200.218.1#53(196.200.218.1)
;; WHEN: Tue May 27 08:48:13 2008
;; MSG SIZE rcvd: 423

dig output

  Some interesting fields:

-  flags section: qr aa rd
-  status
-  answer section
-  authority section
-  TTL (numbers in the left column)
-  query time
-  server

  Notice the 'A' and 'AAAA' record type in the output.

Record types

Basic record types:

  A, AAAA: IPv4, IPv6 address
  NS: NameServer
  MX: Mail eXchanger
  CNAME: Canonical name (alias)
  PTR: Reverse information

Caching vs Authoritative

  In the dig output, and in subsequent outputs, we
noticed a decrease in query time if we repeated the
query.

  Answers are being cached by the querying
nameserver, to speed up requests and save network
ressources

  The TTL value controls the time an answer can be
cached

  DNS servers can be put in two categories: caching
and authoritative.

Caching vs Authoritative:
authoritative

  Authoritative servers typically only answer queries
for data over which they have authority, i.e.: data of
which they have an external copy, i.e. from disk (file
or database)

  If they do not know the answer, they will point to a
source of authority, but will not process the query
recursively.

Caching vs Authoritative: caching

  Caching nameservers act as query forwarders on
behalf of clients, and cache answers for later.

  Can be the same software (often is), but mixing
functionality (recursive/caching and authoritative) is
discouraged (security risks + confusing)

  The TTL of the answer is used to determine how
long it may be cached without re-querying.

TTL values

  TTL values decrement and expire

  Try repeatedly asking for the A record for
www.yahoo.com:

 # dig www.yahoo.com

  What do you observe about the query time and the
TTL?

SOA

Let's query the SOA for a domain:

dig SOA <domain>
...
;; AUTHORITY SECTION:
<domain>. 860 IN SOA ns.<domain>. root.<domain>.
 200702270 ; serial
 28800 ; refresh
 14400 ; retry
 3600000 ; expire
 86400 ; neg ttl
...

SOA

  The first two fields highlighted are:

-  The SOA (Start Of Authority), which the administrator sets
to the name of the « source » server for the domain data
(this is not always the case)

-  The RP (Responsible Person), which is the email address
(with the first @ replaced by a '.') to contact in case of
technical problems.

SOA

  The other fields are:
-  serial: the serial number of the zone: this is used for

replication between two nameservers
-  refresh: how often a replica server should check the

master to see if there is new data
-  retry: how often to retry if the master server fails to answer

after refresh.
-  expire: when the master server has failed to answer for

too long, stop answering clients about this data.
  Why is expire necessary?

Running a caching nameserver

  Running a caching nameserver locally can be very
useful

  Easy to setup, for example on FreeBSD:

-  add named_enable="YES" to /etc/rc.conf
-  start named:

 /etc/rc.d/named start

  What is a good test to verify that named is
running?

Running a caching nameserver

When you are confident that your caching
nameserver is working, enable it in your local
resolver configuration (/etc/resolv.conf):

 nameserver 127.0.0.1
 nameserver ::1

Delegation

  We mentioned that one of the advantages of DNS was
that of distribution through shared administration. This
is called delegation.

  We delegate when there is an administrative boundary
and we want to turn over control of a subdomain to:
-  a department of a larger organization
-  an organization in a country
-  an entity representing a country's domain

Delegation

Delegation: Domains vs Zones

  When we talk about the entire subtree, we talk
about domains

  When we talk about part of a domain that is
administered by an entity, we talk about zones

Delegation: Domains vs Zones

Finding the error: using doc

  When you encounter problems with your network,
web service or email, you don't always suspect DNS.

  When you do, it's not always obvious what the
problem is – DNS is tricky.

  A great tool for quickly spotting configuration
problems is 'doc'

  /usr/ports/dns/doc – install it now!
  Let's do a few tests on screen with doc...

Conclusion

  DNS is a vast subject
  It takes a lot of practice to pinpoint problems

accurately the first time – caching and recursion are
especially confusing

  Remember that there are several servers for the
same data, and you don't always talk to the same
one

  Practice, practice, practice!
  Don't be afraid to ask questions...

?

Questions ?

